TY - GEN
T1 - A computational framework for constructing interactive feedback for assisting motor learning
AU - Sundaram, Hari
AU - Chen, Yinpeng
AU - Rikakis, Thanassis
PY - 2011
Y1 - 2011
N2 - New motion capture technologies are allowing detailed, precise and complete monitoring of movement through real-time kinematic analysis. However, a clinically relevant understanding of movement impairment through kinematic analysis requires the development of computational models that integrate clinical expertise in the weighing of the kinematic parameters. The resulting kinematics based measures of movement impairment would further need to be integrated with existing clinical measures of activity disability. This is a challenging process requiring computational solutions that can extract correlations within and between three diverse data sets: human driven assessment of body function, kinematic based assessment of movement impairment and human driven assessment of activity. We propose to identify and characterize different sensorimotor control strategies used by normal individuals and by hemiparetic stroke survivors acquiring a skilled motor task. We will use novel quantitative approaches to further our understanding of how human motor function is coupled to multiple and simultaneous modes of feedback. The experiments rely on a novel interactive tasks environment developed by our team in which subjects are provided with rich auditory and visual feedback of movement variables to drive motor learning. Our proposed research will result in a computational framework for applying virtual information to assist motor learning for complex tasks that require coupling of proprioception, vision audio and haptic cues. We shall use the framework to devise a computational tool to assist with therapy of stroke survivors. This tool will utilize extracted relationships in a pre-clinical setting to generate effective and customized rehabilitation strategies.
AB - New motion capture technologies are allowing detailed, precise and complete monitoring of movement through real-time kinematic analysis. However, a clinically relevant understanding of movement impairment through kinematic analysis requires the development of computational models that integrate clinical expertise in the weighing of the kinematic parameters. The resulting kinematics based measures of movement impairment would further need to be integrated with existing clinical measures of activity disability. This is a challenging process requiring computational solutions that can extract correlations within and between three diverse data sets: human driven assessment of body function, kinematic based assessment of movement impairment and human driven assessment of activity. We propose to identify and characterize different sensorimotor control strategies used by normal individuals and by hemiparetic stroke survivors acquiring a skilled motor task. We will use novel quantitative approaches to further our understanding of how human motor function is coupled to multiple and simultaneous modes of feedback. The experiments rely on a novel interactive tasks environment developed by our team in which subjects are provided with rich auditory and visual feedback of movement variables to drive motor learning. Our proposed research will result in a computational framework for applying virtual information to assist motor learning for complex tasks that require coupling of proprioception, vision audio and haptic cues. We shall use the framework to devise a computational tool to assist with therapy of stroke survivors. This tool will utilize extracted relationships in a pre-clinical setting to generate effective and customized rehabilitation strategies.
UR - http://www.scopus.com/inward/record.url?scp=84862244858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862244858&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2011.6090329
DO - 10.1109/IEMBS.2011.6090329
M3 - Conference contribution
C2 - 22254579
AN - SCOPUS:84862244858
SN - 9781424441211
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 1399
EP - 1402
BT - 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
T2 - 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Y2 - 30 August 2011 through 3 September 2011
ER -