A Comprehensive Evaluation of Biases in Convective Storm Parameters in CMIP6 Models over North America

Deepak Gopalakrishnan, Carlos Cuervo-Lopez, John T. Allen, Robert J. Trapp, Eric Robinson

Research output: Contribution to journalArticlepeer-review

Abstract

This study presents an evaluation of the skill of 12 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) archive in capturing convective storm parameters over the United States. For the historical reference period 1979–2014, we compare the model-simulated 6-hourly convective available potential energy (CAPE), convective inhibition (CIN), 0–1-km wind shear (S01), and 0–6-km wind shear (S06) to those from two independent reanalysis datasets: ERA5 and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2). To obtain a comprehensive picture, we analyze the parameter distribution, climatological mean, extreme, and thresholded frequency of convective parameters. The analysis reveals significant bias in capturing both magnitude and spatial patterns, which also vary across the seasons. The spatial distribution of means and extremes of the parameters indicates that most models tend to overestimate CAPE, whereas S01 and S06 are underrepresented to varying extents. Additionally, models tend to underestimate extremes in CIN. Comparing the model profiles with rawinsonde profiles indicates that most of the high CAPE models have a warm and moist bias. We also find that the near-surface wind speed is generally underestimated by the models. The intermodel spread is larger for thermodynamic parameters as compared to kinematic parameters. The models generally have a significant positive bias in CAPE over western and eastern regions of the continental United States. More importantly, the bias in the thresholded frequency of all four variables is considerably larger than the bias in the mean, suggesting a nonuniform bias across the distribution. This likely leads to an underrepresentation of favorable severe thunderstorm environments and has the potential to influence dynamical downscaling simulations via initial and boundary conditions. SIGNIFICANCE STATEMENT: Global climate model projections are often used to explore future changes in severe thunderstorm activity. However, climate model outputs often have significant biases, and they can strongly impact the results. In this study, we thoroughly examined biases in convective parameters in 12 models from phase 6 of the Coupled Model Intercomparison Project with respect to two reanalysis datasets. The analysis is performed for North America, covering the period 1979–2014. The study reveals significant biases in convective parameters that differ between models and are tied to the biases in temperature, humidity, and wind profiles. These results provide valuable insight into selecting the right set of models to analyze future changes in severe thunderstorm activity across the North American continent.

Original languageEnglish (US)
Pages (from-to)947-971
Number of pages25
JournalJournal of Climate
Volume38
Issue number4
DOIs
StatePublished - Feb 2025

Keywords

  • Bias
  • Climate models
  • Model evaluation/performance
  • North America
  • Severe storms
  • Storm environments

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'A Comprehensive Evaluation of Biases in Convective Storm Parameters in CMIP6 Models over North America'. Together they form a unique fingerprint.

Cite this