A complementary experimental and numerical study of the flow and heat transfer in offset strip-fin heat exchangers

N. C. De Jong, L. W. Zhang, A. M. Jacobi, S. Balachandar, D. K. Tafti

Research output: Contribution to journalArticlepeer-review

Abstract

A detailed analysis of experimental and numerical results for flow and heat transfer in similar offset strip-fin geometries is presented. Surface-average heat transfer and pressure drop, local Nusselt numbers and skin friction coefficients on the fin surface, instantaneous flow structures, and local time-averaged velocity profiles are contrasted for a range of Reynolds numbers using both prior and new experimental and numerical results. This contrast verifies that a two-dimensional unsteady numerical simulation captures the important features of the flow and heat transfer for a range of conditions. However, flow three-dimensionality appears to become important for Reynolds numbers greater than about 1300, and thermal boundary conditions are important for Reynolds numbers below 1000. The results indicate that boundary layer development, flow separation and reattachment, wake formation, and vortex shedding are all important in this complex geometry.

Original languageEnglish (US)
Pages (from-to)690-698
Number of pages9
JournalJournal of Heat Transfer
Volume120
Issue number3
DOIs
StatePublished - Aug 1998

Keywords

  • Finned surfaces
  • Heat exchangers
  • Numerical methods

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A complementary experimental and numerical study of the flow and heat transfer in offset strip-fin heat exchangers'. Together they form a unique fingerprint.

Cite this