A Comparison Between Joint Space and Task Space Mappings for Dynamic Teleoperation of an Anthropomorphic Robotic Arm in Reaction Tests

Sunyu Wang, Kevin Murphy, Dillan Kenney, Joao Ramos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Teleoperation-i.e., controlling a robot with human motion-proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot's arms.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2846-2852
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: May 30 2021Jun 5 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period5/30/216/5/21

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A Comparison Between Joint Space and Task Space Mappings for Dynamic Teleoperation of an Anthropomorphic Robotic Arm in Reaction Tests'. Together they form a unique fingerprint.

Cite this