A Communication-Efficient Multi-Agent Actor-Critic Algorithm for Distributed Reinforcement Learning

Yixuan Lin, Kaiqing Zhang, Zhuoran Yang, Zhaoran Wang, Tamer Basar, Romeil Sandhu, Ji Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper considers a distributed reinforcement learning problem in which a network of multiple agents aim to cooperatively maximize the globally averaged return through communication with only local neighbors. A randomized communication-efficient multi-agent actor-critic algorithm is proposed for possibly unidirectional communication relationships depicted by a directed graph. It is shown that the algorithm can solve the problem for strongly connected graphs by allowing each agent to transmit only two scalar-valued variables at one time.

Original languageEnglish (US)
Title of host publication2019 IEEE 58th Conference on Decision and Control, CDC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5562-5567
Number of pages6
ISBN (Electronic)9781728113982
DOIs
StatePublished - Dec 2019
Event58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France
Duration: Dec 11 2019Dec 13 2019

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2019-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference58th IEEE Conference on Decision and Control, CDC 2019
Country/TerritoryFrance
CityNice
Period12/11/1912/13/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'A Communication-Efficient Multi-Agent Actor-Critic Algorithm for Distributed Reinforcement Learning'. Together they form a unique fingerprint.

Cite this