### Abstract

In this work, we combine our earlier proposed empirical potential based quasi-continuum theory, (EQT) [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)10.1063/1.2793070], which is a coarse-grained multiscale framework to predict the static structure of confined fluids, with a phenomenological Langevin equation to simulate the dynamics of confined fluids in thermal equilibrium. An attractive feature of this approach is that all the input parameters to the Langevin equation (mean force profile of the confined fluid and the static friction coefficient) can be determined using the outputs of the EQT and the self-diffusivity data of the corresponding bulk fluid. The potential of mean force profile, which is a direct output from EQT is used to compute the mean force profile of the confined fluid. The density profile, which is also a direct output from EQT, along with the self-diffusivity data of the bulk fluid is used to determine the static friction coefficient of the confined fluid. We use this approach to compute the mean square displacement and survival probabilities of some important fluids such as carbon-dioxide, water, and Lennard-Jones argon confined inside slit pores. The predictions from the model are compared with those obtained using molecular dynamics simulations. This approach of combining EQT with a phenomenological Langevin equation provides a mathematically simple and computationally efficient means to study the impact of structural inhomogeneity on the self-diffusion dynamics of confined fluids.

Original language | English (US) |
---|---|

Article number | 124109 |

Journal | Journal of Chemical Physics |

Volume | 138 |

Issue number | 12 |

DOIs | |

State | Published - Mar 28 2013 |

### Fingerprint

### ASJC Scopus subject areas

- Physics and Astronomy(all)
- Physical and Theoretical Chemistry

### Cite this

**A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids.** / Sanghi, T.; Aluru, N. R.

Research output: Contribution to journal › Article

*Journal of Chemical Physics*, vol. 138, no. 12, 124109. https://doi.org/10.1063/1.4796387

}

TY - JOUR

T1 - A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids

AU - Sanghi, T.

AU - Aluru, N. R.

PY - 2013/3/28

Y1 - 2013/3/28

N2 - In this work, we combine our earlier proposed empirical potential based quasi-continuum theory, (EQT) [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)10.1063/1.2793070], which is a coarse-grained multiscale framework to predict the static structure of confined fluids, with a phenomenological Langevin equation to simulate the dynamics of confined fluids in thermal equilibrium. An attractive feature of this approach is that all the input parameters to the Langevin equation (mean force profile of the confined fluid and the static friction coefficient) can be determined using the outputs of the EQT and the self-diffusivity data of the corresponding bulk fluid. The potential of mean force profile, which is a direct output from EQT is used to compute the mean force profile of the confined fluid. The density profile, which is also a direct output from EQT, along with the self-diffusivity data of the bulk fluid is used to determine the static friction coefficient of the confined fluid. We use this approach to compute the mean square displacement and survival probabilities of some important fluids such as carbon-dioxide, water, and Lennard-Jones argon confined inside slit pores. The predictions from the model are compared with those obtained using molecular dynamics simulations. This approach of combining EQT with a phenomenological Langevin equation provides a mathematically simple and computationally efficient means to study the impact of structural inhomogeneity on the self-diffusion dynamics of confined fluids.

AB - In this work, we combine our earlier proposed empirical potential based quasi-continuum theory, (EQT) [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)10.1063/1.2793070], which is a coarse-grained multiscale framework to predict the static structure of confined fluids, with a phenomenological Langevin equation to simulate the dynamics of confined fluids in thermal equilibrium. An attractive feature of this approach is that all the input parameters to the Langevin equation (mean force profile of the confined fluid and the static friction coefficient) can be determined using the outputs of the EQT and the self-diffusivity data of the corresponding bulk fluid. The potential of mean force profile, which is a direct output from EQT is used to compute the mean force profile of the confined fluid. The density profile, which is also a direct output from EQT, along with the self-diffusivity data of the bulk fluid is used to determine the static friction coefficient of the confined fluid. We use this approach to compute the mean square displacement and survival probabilities of some important fluids such as carbon-dioxide, water, and Lennard-Jones argon confined inside slit pores. The predictions from the model are compared with those obtained using molecular dynamics simulations. This approach of combining EQT with a phenomenological Langevin equation provides a mathematically simple and computationally efficient means to study the impact of structural inhomogeneity on the self-diffusion dynamics of confined fluids.

UR - http://www.scopus.com/inward/record.url?scp=84875781737&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84875781737&partnerID=8YFLogxK

U2 - 10.1063/1.4796387

DO - 10.1063/1.4796387

M3 - Article

C2 - 23556711

AN - SCOPUS:84875781737

VL - 138

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 12

M1 - 124109

ER -