A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression

J. E. Conour, W. V. Graham, H. R. Gaskins

Research output: Contribution to journalArticle

Abstract

The intracellular reduction-oxidation (redox) environment influences cell cycle progression; however, underlying mechanisms are poorly understood. To examine potential mechanisms, the intracellular redox environment was characterized per cell cycle phase in Chinese hamster ovary fibroblasts via flow cytometry by measuring reduced glutathione (GSH), reactive oxygen species (ROS), and DNA content with monochlorobimane, 2′,7′- dichlorohydrofluorescein diacetate (H2DCFDA), and DRAQ5, respectively. GSH content was significantly greater in G2/M compared with G1 phase cells, whereas GSH was intermediate in S phase cells. ROS content was similar among phases. Together, these data demonstrate that G2/M cells are more reduced than G1 cells. Conventional approaches to define regulatory mechanisms are subjective in nature and focus on single proteins/pathways. Proteome databases provide a means to overcome these inherent limitations. Therefore, a novel bioinformatic approach was developed to exhaustively identify putative redox-regulated cell cycle proteins containing redox-sensitive protein motifs. Using the InterPro (http://www.ebi.ac.uk/ interpro/) database, we categorized 536 redox-sensitive motifs as: 1) active/functional-site cysteines, 2) electron transport, 3) heme, 4) iron binding, 5) zinc binding, 6) metal binding (non-Fe/Zn), and 7) disulfides. Comparing this list with 1,634 cell cycle-associated proteins from Swiss-Prot and SpTrEMBL (http://us.expasy.org/sprot/) revealed 92 candidate proteins. Three-fourths (69 of 92) of the candidate proteins function in the central cell cycle processes of transcription, nucleotide metabolism, (de)phosphorylation, and (de)ubiquitinylation. The majority of oxidant-sensitive candidate proteins (68.9%) function during G2/M phase. As the G2/M phase is more reduced than the G1 phase, oxidant-sensitive proteins may be temporally regulated by oscillation of the intracellular redox environment. Combined with evidence of intracellular redox compartmentalization, we propose a spatiotemporal mechanism that functionally links an oscillating intracellular redox environment with cell cycle progression.

Original languageEnglish (US)
Pages (from-to)196-205
Number of pages10
JournalPhysiological genomics
Volume18
DOIs
StatePublished - Oct 1 2004

Keywords

  • Bioinformatics
  • Redox regulation

ASJC Scopus subject areas

  • Physiology
  • Genetics

Fingerprint Dive into the research topics of 'A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression'. Together they form a unique fingerprint.

  • Cite this