Combined density functional theory and molecular dynamics simulations were performed to investigate ionic selectivity of boron nitride nanotubes (BNNTs). A finite-length (10, 10) BNNT with a diameter of 1.356 nm immersed in a reservoir of 1 M KCl solution can selectively conduct Cl- ions, while K+ ions barely reach the center of the nanotube and do not conduct. In contrast, a (10, 10) single-walled carbon nanotube of approximately the same diameter immersed in a 1 M KCl solution can selectively conduct K+ ions through the nanotube. We investigate the potential of mean force analysis, binding energy calculations, the water structure, and its orientation, to explain the selectivity of BNNT.

Original languageEnglish (US)
Pages (from-to)185-190
Number of pages6
JournalChemical Physics Letters
Issue number4-6
StatePublished - Aug 27 2009

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'A chloride ion-selective boron nitride nanotube'. Together they form a unique fingerprint.

Cite this