TY - GEN
T1 - A chance-constrained generative framework for sequence optimization
AU - Liu, Xianggen
AU - Liu, Qiang
AU - Song, Sen
AU - Peng, Jian
AU - Liu, Xianggen
N1 - Publisher Copyright:
© 2020 37th International Conference on Machine Learning, ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Deep generative modeling has achieved many successes for continuous data generation, such as producing realistic images and controlling their properties (e.g., styles). However, the development of generative modeling techniques for optimizing discrete data, such as sequences or strings, still lags behind largely due to the challenges in modeling complex and long-range constraints, including both syntax and semantics, in discrete structures. In this paper, we formulate the sequence optimization task as a chance-constrained optimization problem. The key idea is to enforce a high probability of generating valid sequences and also optimize the property of interest. We propose a novel minimax algorithm to simultaneously tighten a bound of the valid chance and optimize the expected property. Extensive experimental results in three domains demonstrate the superiority of our approach over the existing sequence optimization methods.
AB - Deep generative modeling has achieved many successes for continuous data generation, such as producing realistic images and controlling their properties (e.g., styles). However, the development of generative modeling techniques for optimizing discrete data, such as sequences or strings, still lags behind largely due to the challenges in modeling complex and long-range constraints, including both syntax and semantics, in discrete structures. In this paper, we formulate the sequence optimization task as a chance-constrained optimization problem. The key idea is to enforce a high probability of generating valid sequences and also optimize the property of interest. We propose a novel minimax algorithm to simultaneously tighten a bound of the valid chance and optimize the expected property. Extensive experimental results in three domains demonstrate the superiority of our approach over the existing sequence optimization methods.
UR - http://www.scopus.com/inward/record.url?scp=85105208453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105208453&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105208453
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 6227
EP - 6237
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -