A catalyst framework for minimax optimization

Junchi Yang, Siqi Zhang, Negar Kiyavash, Niao He

Research output: Contribution to journalConference articlepeer-review

Abstract

We introduce a generic two-loop scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated dual problem and takes full advantage of existing gradient-based algorithms to solve a sequence of well-balanced strongly-convex-strongly-concave minimax problems. Despite its simplicity, this leads to a family of near-optimal algorithms with improved complexity over all existing methods designed for strongly-convex-concave minimax problems. Additionally, we obtain the first variance-reduced algorithms for this class of minimax problems with finite-sum structure and establish faster convergence rate than batch algorithms. Furthermore, when extended to the nonconvex-concave minimax optimization, our algorithm again achieves the state-of-the-art complexity for finding a stationary point. We carry out several numerical experiments showcasing the superiority of the Catalyst framework in practice.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A catalyst framework for minimax optimization'. Together they form a unique fingerprint.

Cite this