A bimodal model to estimate dynamic metropolitan population by mobile phone data

Jie Feng, Yong Li, Fengli Xu, Depeng Jin

Research output: Contribution to journalArticle

Abstract

Accurate, real-time and fine-spatial population distribution is crucial for urban planning, government management, and advertisement promotion. Limited by technics and tools, we rely on the census to obtain this information in the past, which is coarse and costly. The popularity of mobile phones gives us a new opportunity to investigate population estimation. However, real-time and accurate population estimation is still a challenging problem because of the coarse localization and complicated user behaviors. With the help of the passively collected human mobility and locations from the mobile networks including call detail records and mobility management signals, we develop a bimodal model beyond the prior work to better estimate real-time population distribution at metropolitan scales. We discuss how the estimation interval, space granularity, and data type will influence the estimation accuracy, and find the data collected from the mobility management signals with the 30 min estimation interval performs better which reduces the population estimation error by 30% in terms of Root Mean Square Error (RMSE). These results show us the great potential of using bimodal model and mobile phone data to estimate real-time population distribution.

Original languageEnglish (US)
Article number3431
JournalSensors (Switzerland)
Volume18
Issue number10
DOIs
StatePublished - Oct 12 2018

Keywords

  • Bimodal model
  • Mobile phone data
  • Real-time metropolitan population estimation

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A bimodal model to estimate dynamic metropolitan population by mobile phone data'. Together they form a unique fingerprint.

  • Cite this