Abstract
This article presents techniques to improve the frequency stability of <inline-formula> <tex-math notation="LaTeX">$RC$</tex-math> </inline-formula> oscillators by performing first-and second-order temperature compensation without needing resistors with opposite temperature coefficients (TCs). Using the proposed three-point digital trim, a prototype 100-MHz frequency-locked loop (FLL)-based <inline-formula> <tex-math notation="LaTeX">$RC$</tex-math> </inline-formula> oscillator fabricated in a 65-nm CMOS process achieves an inaccuracy of <inline-formula> <tex-math notation="LaTeX">$\pm$</tex-math> </inline-formula>140 ppm over <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>40 <inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula>C to 95 <inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula>C, 83-ppm/V voltage sensitivity, 1.3-ppm Allan deviation floor, and 1-<inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula>W/MHz power efficiency. When only a single-point trim is performed using a multiple linear regression model leveraging the strong correlation between three switched resistors, the frequency inaccuracy is <inline-formula> <tex-math notation="LaTeX">$\pm$</tex-math> </inline-formula>587 ppm.
Original language | English (US) |
---|---|
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | IEEE Journal of Solid-State Circuits |
DOIs | |
State | Accepted/In press - 2022 |
Keywords
- <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$RC$</tex-math> </inline-formula> oscillator
- Delta–sigma modulator
- Frequency locked loops
- Oscillators
- pulse density modulation
- Resistance
- Resistors
- ring voltage-controlled oscillator (VCO)
- Sensitivity
- switched capacitor
- switched resistor
- Switches
- temperature compensation
- Temperature sensors
ASJC Scopus subject areas
- Electrical and Electronic Engineering