Search concepts
|
Selected Filters
|
- 68,250 - 68,300 out of 207,408 results
Search results
-
Physics of the Inverted Harmonic Oscillator: From the lowest Landau level to event horizons
Subramanyan, V., Hegde, S. S., Vishveshwara, S. & Bradlyn, B., Dec 2021, In: Annals of Physics. 435, 168470.Research output: Contribution to journal › Article › peer-review
Open Access -
Physics of silicon nanodevices
Ferry, D. K., Akis, R., Gilbert, M. J. & Ramey, S. M., Jan 1 2017, Silicon Nanoelectronics. CRC Press, p. 1-32 32 p.Research output: Chapter in Book/Report/Conference proceeding › Chapter
-
Physics of sand castles: maximum angle of stability in wet and dry granular media
Barabási, A. L., Albert, R. & Schiffer, P., Apr 15 1999, In: Physica A: Statistical Mechanics and its Applications. 266, 1-4, p. 366-371 6 p.Research output: Contribution to journal › Conference article › peer-review
-
Physics of hollow Bose-Einstein condensates
Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S., Oct 2017, In: EPL. 120, 2, 20004.Research output: Contribution to journal › Article › peer-review
-
Physics of failure, predictive modeling & data analytics for LOCA frequency
O'Shea, N., Pence, J., Mohaghegh, Z. & Kee, E., May 8 2015, RAMS 2015 - 61st Annual Reliability and Maintainability Symposium, Proceedings and Tutorials 2015. Institute of Electrical and Electronics Engineers Inc., 7105125. (Proceedings - Annual Reliability and Maintainability Symposium; vol. 2015-May).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics of engineered protein hydrogels
Kim, M., Tang, S. & Olsen, B. D., Apr 1 2013, In: Journal of Polymer Science, Part B: Polymer Physics. 51, 7, p. 587-601 15 p.Research output: Contribution to journal › Article › peer-review
-
Physics of eccentric binary black hole mergers: A numerical relativity perspective
Huerta, E. A., Haas, R., Habib, S., Gupta, A., Rebei, A., Chavva, V., Johnson, D., Rosofsky, S., Wessel, E., Agarwal, B., Luo, D. & Ren, W., Sep 4 2019, In: Physical Review D. 100, 6, 64003.Research output: Contribution to journal › Article › peer-review
Open Access -
Physics of base charge dynamics in the three port transistor laser
Then, H. W., Feng, M. & Holonyak, N., 2010, In: Applied Physics Letters. 96, 11, 113509.Research output: Contribution to journal › Article › peer-review
-
Physics-motivated numerical solvers for partial differential equations
San Martin, L. & Oono, Y., 1998, In: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 57, 4, p. 4795-4810 16 p.Research output: Contribution to journal › Article › peer-review
-
Physics in the whirlwind of optical communications
Thomas, G. A., Ackerman, D. A., Prucnal, P. R. & Lance Cooper, S., Sep 2000, Physics Today, 53, 9, p. 30-37 8 p.Research output: Contribution to specialist publication › Article
-
Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
He, Q. Z., Barajas-Solano, D., Tartakovsky, G. & Tartakovsky, A. M., Jul 2020, In: Advances in Water Resources. 141, 103610.Research output: Contribution to journal › Article › peer-review
-
Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations
He, Q. Z. & Tartakovsky, A. M., Jul 2021, In: Water Resources Research. 57, 7, e2020WR029479.Research output: Contribution to journal › Article › peer-review
-
Physics-informed machine learning with conditional Karhunen-Loève expansions
Tartakovsky, A. M., Barajas-Solano, D. A. & He, Q., Feb 1 2021, In: Journal of Computational Physics. 426, 109904.Research output: Contribution to journal › Article › peer-review
-
Physics-informed machine learning model for battery state of health prognostics using partial charging segments
Kohtz, S., Xu, Y., Zheng, Z. & Wang, P., Jun 1 2022, In: Mechanical Systems and Signal Processing. 172, 109002.Research output: Contribution to journal › Article › peer-review
-
Physics-Informed Machine Learning Method for Large-Scale Data Assimilation Problems
Yeung, Y. H., Barajas-Solano, D. A. & Tartakovsky, A. M., May 2022, In: Water Resources Research. 58, 5, e2021WR031023.Research output: Contribution to journal › Article › peer-review
Open Access -
Physics-informed machine learning method for forecasting and uncertainty quantification of partially observed and unobserved states in power grids
Tipireddy, R. & Tartakovsky, A., 2019, Proceedings of the 52nd Annual Hawaii International Conference on System Sciences, HICSS 2019. Bui, T. X. (ed.). IEEE Computer Society, p. 3438-3444 7 p. (Proceedings of the Annual Hawaii International Conference on System Sciences; vol. 2019-January).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-informed machine learning for surrogate modeling of wind pressure and optimization of pressure sensor placement
Zhu, Q., Zhao, Z. & Yan, J., Mar 2023, In: Computational Mechanics. 71, 3, p. 481-491 11 p.Research output: Contribution to journal › Article › peer-review
-
Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges
Xu, Y., Kohtz, S., Boakye, J., Gardoni, P. & Wang, P., Feb 2023, In: Reliability Engineering and System Safety. 230, 108900.Research output: Contribution to journal › Article › peer-review
-
Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints
Bansal, P., Zheng, Z., Shao, C., Li, J., Banu, M., Carlson, B. E. & Li, Y., Nov 2022, In: Reliability Engineering and System Safety. 227, 108711.Research output: Contribution to journal › Article › peer-review
-
Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems
Li, J. & Tartakovsky, A. M., Aug 1 2022, In: Journal of Computational Physics. 462, 111230.Research output: Contribution to journal › Article › peer-review
-
Physics-informed Gaussian Process Regression Model for Battery Management
Kohtz, S. & Wang, P., 2022, IISE Annual Conference and Expo 2022. Ellis, K., Ferrell, W. & Knapp, J. (eds.). Institute of Industrial and Systems Engineers, IISE, (IISE Annual Conference and Expo 2022).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-informed Gaussian process regression for states estimation and forecasting in power grids
Tartakovsky, A. M., Ma, T., Barajas-Solano, D. A. & Tipireddy, R., Apr 1 2023, In: International Journal of Forecasting. 39, 2, p. 967-980 14 p.Research output: Contribution to journal › Article › peer-review
-
Physics-informed ensemble learning for online joint strength prediction in ultrasonic metal welding
Meng, Y. & Shao, C., Dec 1 2022, In: Mechanical Systems and Signal Processing. 181, 109473.Research output: Contribution to journal › Article › peer-review
-
Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis
Noakoasteen, O., Wang, S., Peng, Z. & Christodoulou, C., 2020, In: IEEE Open Journal of Antennas and Propagation. 1, 1, p. 404-412 9 p., 9158400.Research output: Contribution to journal › Article › peer-review
Open Access -
Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D. & Barajas-Solano, D., May 1 2020, In: Water Resources Research. 56, 5, e2019WR026731.Research output: Contribution to journal › Article › peer-review
-
Physics-informed CoKriging model of a redox flow battery
Howard, A. A., Yu, T., Wang, W. & Tartakovsky, A. M., Sep 15 2022, In: Journal of Power Sources. 542, 231668.Research output: Contribution to journal › Article › peer-review
-
Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method for data-model convergence
Yang, X., Barajas-Solano, D., Tartakovsky, G. & Tartakovsky, A. M., Oct 15 2019, In: Journal of Computational Physics. 395, p. 410-431 22 p.Research output: Contribution to journal › Article › peer-review
-
PHYSICS INFORMATION AIDED KRIGING USING STOCHASTIC SIMULATION MODELS
Yang, X., Tartakovsky, G. & Tartakovsky, A. M., 2021, In: SIAM Journal on Scientific Computing. 43, 6, p. A3862-A3891Research output: Contribution to journal › Article › peer-review
-
PHYSICS GUIDELINES FOR THE COMPACT IGNITION TOKAMAK.
Sheffield, J., Dory, R. A., Houlberg, W. A., Uckan, N. A., Bell, M., Colestock, P., Hosea, J., Kaye, S., Petravic, M., Post, D., Scott, S. D., Young, K. M., Burrell, K. H., Ohyabu, N., Stambaugh, R., Greenwald, M., Liewer, P., Ross, D., Singer, C. & Weitznerh, H., Nov 1 1986, In: Fusion Technology. 10, 3, p. 481-490 10 p.Research output: Contribution to journal › Conference article › peer-review
-
Physics-guided machine learning for 3-D quantitative quasi-static elasticity imaging
Hoerig, C., Ghaboussi, J. & Insana, M. F., 2020, In: Physics in medicine and biology. 65, 6, 065011.Research output: Contribution to journal › Article › peer-review
-
Physics exam preparation: A comparison of three methods
Fakcharoenphol, W. & Stelzer, T., Mar 17 2014, In: Physical Review Special Topics - Physics Education Research. 10, 1, 010108.Research output: Contribution to journal › Article › peer-review
-
Physics-Embedded Machine Learning for Efficient Modeling of High-Frequency Circuits
Liu, Y., Li, H. & Jin, J. M., 2022, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings. Institute of Electrical and Electronics Engineers Inc., p. 834-835 2 p. (2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics education research funding census
Henderson, C., Barthelemy, R., Finkelstein, N. & Mestre, J., 2012, 2011 Physics Education Research Conference. p. 211-214 4 p. (AIP Conference Proceedings; vol. 1413).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-driven regularization of deep neural networks for enhanced engineering design and analysis
Nabian, M. A. & Meidani, H., Feb 2020, In: Journal of Computing and Information Science in Engineering. 20, 1, 011006-1.Research output: Contribution to journal › Article › peer-review
-
Physics-driven modeling for aerothermodynamics
Jo, S. M., Venturi, S., Munafò, A., Sharma, M. & Panesi, M., 2021, AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021. American Institute of Aeronautics and Astronautics Inc, AIAA, AIAA 2021-3143. (AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics disabilities
Berenbaum, M., Mar 1 2003, In: American Entomologist. 49, 1, p. 3-4 2 p.Research output: Contribution to journal › Article › peer-review
Open Access -
Physics-Constrained Machine Learning for Reliability-Based Design Optimization
Xu, Y. & Wang, P., 2023, 2023 Annual Reliability and Maintainability Symposium, RAMS 2023. Institute of Electrical and Electronics Engineers Inc., (Proceedings - Annual Reliability and Maintainability Symposium; vol. 2023-January).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-constrained deep neural network method for estimating parameters in a redox flow battery
He, Q. Z., Stinis, P. & Tartakovsky, A. M., Apr 30 2022, In: Journal of Power Sources. 528, 231147.Research output: Contribution to journal › Article › peer-review
-
Physics-based repair rate curves for segmented pipelines subject to seismic excitations
Iannacone, L. & Gardoni, P., 2023, In: Sustainable and Resilient Infrastructure. 8, 1, p. 121-141 21 p.Research output: Contribution to journal › Article › peer-review
-
Physics-Based Probabilistic Models for the Reliability Analysis of Bridges
Nocera, F., Tabandeh, A. & Gardoni, P., 2022, Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures - EUROSTRUCT 2021. Pellegrino, C., Faleschini, F., Zanini, M. A., Matos, J. C., Casas, J. R. & Strauss, A. (eds.). Springer, p. 285-294 10 p. (Lecture Notes in Civil Engineering; vol. 200 LNCE).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-based probabilistic models: Integrating differential equations and observational data
Tabandeh, A., Asem, P. & Gardoni, P., Nov 2020, In: Structural Safety. 87, 101981.Research output: Contribution to journal › Article › peer-review
-
Physics-based probabilistic demand model and reliability analysis for reinforced concrete beams under blast loads
Stochino, F., Tabandeh, A., Gardoni, P. & Sassu, M., Dec 1 2021, In: Engineering Structures. 248, 112932.Research output: Contribution to journal › Article › peer-review
-
Physics-based probabilistic capacity models and fragility estimates for light wood frame shear walls
Dunton, A. & Gardoni, P., Jun 15 2023, In: Engineering Structures. 285, 115966.Research output: Contribution to journal › Article › peer-review
-
Physics based models for metal hydride particle morphology, distribution, and effective thermal conductivity
Smith, K. C. & Fisher, T. S., 2009, Nanoscale Heat Transport - From Fundamentals to Devices. Materials Research Society, p. 78-83 6 p. (Materials Research Society Symposium Proceedings; vol. 1172).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-based modeling for partial slip behavior of spherical contacts
Eriten, M., Polycarpou, A. A. & Bergman, L. A., Sep 2010, In: International Journal of Solids and Structures. 47, 18-19, p. 2554-2567 14 p.Research output: Contribution to journal › Article › peer-review
-
Physics-based modeling for fretting behavior of nominally flat rough surfaces
Eriten, M., Polycarpou, A. A. & Bergman, L. A., May 15 2011, In: International Journal of Solids and Structures. 48, 10, p. 1436-1450 15 p.Research output: Contribution to journal › Article › peer-review
-
Physics-based Machine Learning with Filtering for Failure Prognostics Partially Observable Dynamic Systems
Kohtz, S. & Wang, P., 2022, 68th Annual Reliability and Maintainability Symposium, RAMS 2022. Institute of Electrical and Electronics Engineers Inc., (Proceedings - Annual Reliability and Maintainability Symposium; vol. 2022-January).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
-
Physics-Based Graphics Models in 3D Synthetic Environments as Autonomous Vision-Based Inspection Testbeds
Hoskere, V., Narazaki, Y. & Spencer, B. F., Jan 1 2022, In: Sensors. 22, 2, 532.Research output: Contribution to journal › Article › peer-review
Open Access -
Physics-based fragility functions: Their mathematical formulation and use in the reliability and resilience analysis of transportation infrastructure
Nocera, F., Tabandeh, A., Guidotti, R., Boakye, J. & Gardoni, P., Jan 1 2018, Routledge Handbook of Sustainable and Resilient Infrastructure. Taylor and Francis, p. 239-260 22 p.Research output: Chapter in Book/Report/Conference proceeding › Chapter
-
Physics-based foundation for empirical mode decomposition
Lee, Y. S., Tsakirtzis, S., Vakakis, A. F., Bergman, L. A. & McFarland, D. M., Dec 2009, In: AIAA journal. 47, 12, p. 2938-2963 26 p.Research output: Contribution to journal › Article › peer-review