9,10-Phenanthrenequinone photoautocatalyzes its formation from phenanthrene, and inhibits biodegradation of naphthalene

Jonathan Holt, Seth Hothem, Heidi Howerton, Richard Larson, Robert A Sanford

Research output: Contribution to journalArticlepeer-review

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have earned considerable attention due to their widespread environmental distribution and toxicity. In the environment, PAHs decompose by a variety of biotic and abiotic pathways. In both polar and nonpolar environments, phenanthrene (Phe, a common, three-ring PAH) is converted by sunlight to more polar products such as 9,10-phenanthrenequinone (PheQ) and subsequent oxidation products such as the corresponding open-ring dicarboxylic acid product. Biodegradation of phenanthrene also usually leads to oxidative metabolites, and eventually ends in mineralization. Our experimental objective was to investigate the photodegradation of phenanthrene and determine the effect of reaction products such as PheQ on microbial biodegradation of two- and three-ring PAHs. Abiotic experiments were performed to examine the photolytic breakdown of Phe; Phe was converted to PheQ, which catalyzed its own formation. In biodegradation experiments PheQ (0.04-4 mg/L) caused marked inhibition of naphthalene (Nap) biodegradation by a Burkholderia species; Phe did not. Only 20% of the naphthalene was degraded in the presence of PheQ compared with 75% in the control culture with no PheQ added. No PAH-degrading cultures were able to use PheQ as sole carbon source; however, the Phe-degrading enrichment culture dominated by a Sphingomonas species was able to degrade PheQ cometabolically in the presence of Phe. These results may explain why photooxidized phenanthrene-containing mixtures can resist biodegradation.

Original languageEnglish (US)
Pages (from-to)462-468
Number of pages7
JournalJournal of Environmental Quality
Volume34
Issue number2
StatePublished - Mar 1 2005

ASJC Scopus subject areas

  • Environmental Engineering
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of '9,10-Phenanthrenequinone photoautocatalyzes its formation from phenanthrene, and inhibits biodegradation of naphthalene'. Together they form a unique fingerprint.

Cite this