8.1 μm-emitting InP-based quantum cascade laser grown on Si by metalorganic chemical vapor deposition

S. Xu, S. Zhang, J. D. Kirch, H. Gao, Y. Wang, M. L. Lee, S. R. Tatavarti, D. Botez, L. J. Mawst

Research output: Contribution to journalArticlepeer-review

Abstract

This study presents the growth and characterization of an 8.1 μm-emitting, InGaAs/AlInAs/InP-based quantum cascade laser (QCL) formed on an InP-on-Si composite template by metalorganic chemical vapor deposition (MOCVD). First, for the composite-template formation, a GaAs buffer layer was grown by solid-source molecular-beam epitaxy on a commercial (001) GaP/Si substrate, thus forming a GaAs/GaP/Si template. Next, an InP metamorphic buffer layer (MBL) structure was grown atop the GaAs/GaP/Si template by MOCVD, followed by the MOCVD growth of the full QCL structure. The top-surface morphology of the GaAs/GaP/Si template before and after the InP MBL growth was assessed via atomic force microscopy, over a 100 μm2 area, and no antiphase domains were found. The average threading dislocation density (TDD) for the GaAs/GaP/Si template was found to be ∼1 × 109 cm−2, with a slightly lower defect density of ∼7.9 × 108 cm−2 after the InP MBL growth. The lasing performance of the QCL structure grown on Si was compared to that of its counterpart grown on InP native substrate and found to be quite similar. That is, the threshold-current density of the QCL on Si, for deep-etched ridge-guide devices with uncoated facets, is somewhat lower than that for its counterpart on native InP substrate, 1.50 vs 1.92 kA/cm2, while the maximum output power per facet is 1.64 vs 1.47 W. These results further demonstrate the resilience of QCLs to relatively high residual TDD values.

Original languageEnglish (US)
Article number031110
JournalApplied Physics Letters
Volume123
Issue number3
DOIs
StatePublished - Jul 17 2023
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of '8.1 μm-emitting InP-based quantum cascade laser grown on Si by metalorganic chemical vapor deposition'. Together they form a unique fingerprint.

Cite this