@inproceedings{a9d56cfaada04cd498afe38cc3d6fa0c,
title = "5 GHz lithium niobate MEMS resonators with high FoM of 153",
abstract = "This paper reports on the demonstration of a new class of super-high frequency (SHF) microelectromechanical system (MEMS) resonators operating in the 5 GHz range. SHF resonances have been achieved using the first order antisymmetric (A1) mode, which features a phase velocity exceeding 10000 m/s in ion-sliced and suspended Z-cut Lithium Nio-bate (LiNbO3) thin films. The fabricated device has demonstrated a high electromechanical coupling (kt2) of 29% and a high quality factor (Q) of 527 simultaneously. Consequently, this work marks the first time that MEMS resonators at SHF were demonstrated with an extremely high figure of merit (FoM= kt2Q) of 153. The SHF operation and high FoM of these A1 mode devices have showcased their potential as the key building blocks for future SHF front-end filters and multiplexers.",
author = "Yansong Yang and Anming Gao and Ruochen Lu and Songbin Gong",
note = "Publisher Copyright: {\textcopyright} 2017 IEEE.; 30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017 ; Conference date: 22-01-2017 Through 26-01-2017",
year = "2017",
month = feb,
day = "23",
doi = "10.1109/MEMSYS.2017.7863565",
language = "English (US)",
series = "Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "942--945",
booktitle = "2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, MEMS 2017",
address = "United States",
}