3D multi-branch tubular surface and centerline extraction with 4D iterative key points

Hua Li, Anthony Yezzi, Laurent Cohen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An innovative 3D multi-branch tubular structure and centerline extraction method is proposed in this paper. In contrast to classical minimal path techniques that can only detect a single curve between two pre-defined initial points, this method propagates outward from only one initial seed point to detect 3D multi-branch tubular surfaces and centerlines simultaneously. First, instead of only representing the trajectory of a tubular structure as a 3D curve, the surface of the entire structure is represented as a 4D curve along which every point represents a 3D sphere inside the tubular structure. Then, from any given sphere inside the tubular structure, a novel 4D iterative key point searching scheme is applied, in which the minimal action map and the Euclidean length map are calculated with a 4D freezing fast marching evolution. A set of 4D key points is obtained during the front propagation process. Finally, by sliding back from each key point to the previous one via the minimal action map until all the key points are visited, we are able to fully obtain global minimizing multi-branch tubular surfaces. An additional immediate benefit of this method is a natural notion of a multi-branch tube's "central curve" by taking only the first three spatial coordinates of the detected 4D multi-branch curve. Experimental results on 2D/3D medical vascular images illustrate the benefits of this method.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI2009 - 12th International Conference, Proceedings
Pages1042-1050
Number of pages9
EditionPART 2
DOIs
StatePublished - 2009
Externally publishedYes
Event12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009 - London, United Kingdom
Duration: Sep 20 2009Sep 24 2009

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume5762 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009
Country/TerritoryUnited Kingdom
CityLondon
Period9/20/099/24/09

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of '3D multi-branch tubular surface and centerline extraction with 4D iterative key points'. Together they form a unique fingerprint.

Cite this