TY - JOUR
T1 - 30 years of free-air carbon dioxide enrichment (FACE)
T2 - What have we learned about future crop productivity and its potential for adaptation?
AU - Ainsworth, Elizabeth A
AU - Long, Stephen P
N1 - Publisher Copyright:
© 2020 John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/1
Y1 - 2021/1
N2 - Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2]. A strong correlation of yield response under elevated [CO2] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2].
AB - Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2]. A strong correlation of yield response under elevated [CO2] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2].
KW - climate change interactions
KW - crops
KW - drought stress
KW - elevated CO
KW - nutrients
UR - http://www.scopus.com/inward/record.url?scp=85096807304&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096807304&partnerID=8YFLogxK
U2 - 10.1111/gcb.15375
DO - 10.1111/gcb.15375
M3 - Review article
C2 - 33135850
SN - 1354-1013
VL - 27
SP - 27
EP - 49
JO - Global change biology
JF - Global change biology
IS - 1
ER -