3-D FDTD simulation of shear waves for evaluation of complex modulus imaging

Marko Orescanin, Yue Wang, Michael Insana

Research output: Contribution to journalArticle

Abstract

The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogenous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

Original languageEnglish (US)
Article number5716456
Pages (from-to)389-398
Number of pages10
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume58
Issue number2
DOIs
StatePublished - Feb 1 2011

Fingerprint

Shear waves
S waves
Elastic moduli
shear
Imaging techniques
Wave propagation
evaluation
wave propagation
simulation
Finite difference time domain method
inversions
Hydrogels
Materials properties
finite difference time domain method
Viscosity
artifacts
Wavelength
Geometry
viscosity
estimates

Keywords

  • Finite difference methods
  • Frequency measurement
  • Mathematical model
  • Needles
  • Phantoms
  • Solid modeling
  • Time domain analysis

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Acoustics and Ultrasonics
  • Instrumentation

Cite this

3-D FDTD simulation of shear waves for evaluation of complex modulus imaging. / Orescanin, Marko; Wang, Yue; Insana, Michael.

In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 2, 5716456, 01.02.2011, p. 389-398.

Research output: Contribution to journalArticle

@article{cecdd2d6f3984c61b2c64df263cb6b69,
title = "3-D FDTD simulation of shear waves for evaluation of complex modulus imaging",
abstract = "The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogenous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.",
keywords = "Finite difference methods, Frequency measurement, Mathematical model, Needles, Phantoms, Solid modeling, Time domain analysis",
author = "Marko Orescanin and Yue Wang and Michael Insana",
year = "2011",
month = "2",
day = "1",
doi = "10.1109/TUFFC.2011.1816",
language = "English (US)",
volume = "58",
pages = "389--398",
journal = "IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control",
issn = "0885-3010",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "2",

}

TY - JOUR

T1 - 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging

AU - Orescanin, Marko

AU - Wang, Yue

AU - Insana, Michael

PY - 2011/2/1

Y1 - 2011/2/1

N2 - The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogenous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

AB - The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogenous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

KW - Finite difference methods

KW - Frequency measurement

KW - Mathematical model

KW - Needles

KW - Phantoms

KW - Solid modeling

KW - Time domain analysis

UR - http://www.scopus.com/inward/record.url?scp=79952010038&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952010038&partnerID=8YFLogxK

U2 - 10.1109/TUFFC.2011.1816

DO - 10.1109/TUFFC.2011.1816

M3 - Article

C2 - 21342824

AN - SCOPUS:79952010038

VL - 58

SP - 389

EP - 398

JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

SN - 0885-3010

IS - 2

M1 - 5716456

ER -