Abstract
The burning of a periodic sandwich of the solid oxidizer, ammonium perchlorate (A) and solid fuel, HTPB is modeled by considering two-dimensional energy balances in both the solid and gas phases, two-dimensional gas species concentration, considering a reduced chemistry model for three global reactions and eight chemical species. Full heat coupling between the solid and gas phase allows the prediction of the AP, binder, and average regression rates. Flame structure including the AP decomposition flame and the diffusion flames with the binder are predicted to occur within regions ranging from 10 jjm to 200 um. Solutions are presented for various AP/binder ratios, at solid rocket pressures, ranging from 40-100 atm. Parametric studies identify the sensitivity of the burning rates to the chemical kinetics constants and the pyrolysis relations, as well as the solid-phase heat exchange coefficient, as.
Original language | English (US) |
---|---|
State | Published - 2000 |
Event | 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2000 - Huntsville, AL, United States Duration: Jul 16 2000 → Jul 19 2000 |
Other
Other | 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2000 |
---|---|
Country/Territory | United States |
City | Huntsville, AL |
Period | 7/16/00 → 7/19/00 |
ASJC Scopus subject areas
- Space and Planetary Science
- Energy Engineering and Power Technology
- Aerospace Engineering
- Control and Systems Engineering
- Electrical and Electronic Engineering
- Mechanical Engineering