TY - JOUR
T1 - 2-local triple derivations on von neumann algebras
AU - Kudaybergenov, Karimbergen
AU - Oikhberg, Timur
AU - Peralta, Antonio M.
AU - Russo, Bernard
N1 - Publisher Copyright:
© 2015 University of Illinois.
PY - 2014/12/1
Y1 - 2014/12/1
N2 - We prove that every (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra M is a triple derivation, equivalently, the set Dert(M), of all triple derivations on M, is algebraically 2-reflexive in the set M(M) =MM of all mappings from M into M.
AB - We prove that every (not necessarily linear nor continuous) 2-local triple derivation on a von Neumann algebra M is a triple derivation, equivalently, the set Dert(M), of all triple derivations on M, is algebraically 2-reflexive in the set M(M) =MM of all mappings from M into M.
UR - http://www.scopus.com/inward/record.url?scp=84954151921&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954151921&partnerID=8YFLogxK
U2 - 10.1215/ijm/1446819301
DO - 10.1215/ijm/1446819301
M3 - Article
AN - SCOPUS:84954151921
SN - 0019-2082
VL - 58
SP - 1055
EP - 1069
JO - Illinois Journal of Mathematics
JF - Illinois Journal of Mathematics
IS - 4
ER -