TY - JOUR
T1 - 2-Keto-4-(methylthio)butyric acid (keto analog of methionine) is a safe and efficacious precursor of L-methionine in chicks
AU - Dilger, Ryan N.
AU - Kobler, Christoph
AU - Weckbecker, Christoph
AU - Hoehler, Dirk
AU - Baker, David H.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2007/8
Y1 - 2007/8
N2 - Relative bioefficacy and toxicity of Met precursor compounds were investigated in young chicks. The effectiveness of DL-Met and 2-keto-4-(methylthio)butyric acid (Keto-Met) to serve as L-Met precursors was quantified using Met-deficient diets of differing composition. Efficacy was based on slope-ratio and standard-curve methodology. Using L-Met as a standard Met source added to a purified diet, DL-Met and Keto-Met were assigned relative bioefficacy values of 98.5 and 92.5%, respectively, based on weight gain. Relative bioefficacy values of 98.5 and 89.3% were assigned to DL-Met and Keto-Met, respectively, when chicks were fed a Met-deficient, corn-soybean meal-peanut meal diet. Thus, both DL-Met and Keto-Met are effective Met precursor compounds in chicks. Additionally, growth-depressing effects of L-Met, DL-Met, and Keto-Met were compared using a nutritionally adequate corn-soybean meal diet supplemented with 15 or 30 g/kg of each compound. Similar reductions in weight gain, food intake, and gain:food ratio were observed for each compound. Subjective spleen color scores, indicative of splenic hemosiderosis, increased linearly (P < 0.01) with increasing intakes of each compound, suggesting a similarity in overall toxicity among these compounds. Because conversion of Keto-Met to L-Met in vivo merely requires transamination, Keto-Met may prove to be a useful supplement not only in food animal production, but also as a component of enteral and parenteral formulas for humans suffering from renal insufficiency.
AB - Relative bioefficacy and toxicity of Met precursor compounds were investigated in young chicks. The effectiveness of DL-Met and 2-keto-4-(methylthio)butyric acid (Keto-Met) to serve as L-Met precursors was quantified using Met-deficient diets of differing composition. Efficacy was based on slope-ratio and standard-curve methodology. Using L-Met as a standard Met source added to a purified diet, DL-Met and Keto-Met were assigned relative bioefficacy values of 98.5 and 92.5%, respectively, based on weight gain. Relative bioefficacy values of 98.5 and 89.3% were assigned to DL-Met and Keto-Met, respectively, when chicks were fed a Met-deficient, corn-soybean meal-peanut meal diet. Thus, both DL-Met and Keto-Met are effective Met precursor compounds in chicks. Additionally, growth-depressing effects of L-Met, DL-Met, and Keto-Met were compared using a nutritionally adequate corn-soybean meal diet supplemented with 15 or 30 g/kg of each compound. Similar reductions in weight gain, food intake, and gain:food ratio were observed for each compound. Subjective spleen color scores, indicative of splenic hemosiderosis, increased linearly (P < 0.01) with increasing intakes of each compound, suggesting a similarity in overall toxicity among these compounds. Because conversion of Keto-Met to L-Met in vivo merely requires transamination, Keto-Met may prove to be a useful supplement not only in food animal production, but also as a component of enteral and parenteral formulas for humans suffering from renal insufficiency.
UR - http://www.scopus.com/inward/record.url?scp=34548067938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548067938&partnerID=8YFLogxK
U2 - 10.1093/jn/137.8.1868
DO - 10.1093/jn/137.8.1868
M3 - Article
C2 - 17634257
AN - SCOPUS:34548067938
SN - 0022-3166
VL - 137
SP - 1868
EP - 1873
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 8
ER -