TY - JOUR
T1 - 16S rRNA Monitoring Point-of-Care Magnetic Focus Lateral Flow Sensor
AU - Ren, Wen
AU - Ahmad, Saeed
AU - Irudayaraj, Joseph
N1 - Publisher Copyright:
© 2021 The Authors. Published by American Chemical Society.
PY - 2021/4/27
Y1 - 2021/4/27
N2 - The detection and profiling of pathogenic bacteria is critical for human health, environmental, and food safety monitoring. Herein, we propose a highly sensitive colorimetric strategy for naked eye screening of 16S ribosomal RNA (16S rRNA) from pathogenic agents relevant to infections, human health, and food safety monitoring with a magnetic focus lateral flow sensor (mLFS) platform. The method developed was demonstrated in model 16S rRNA sequences of the pathogen Escherichia coli O157:H7 to detect as low as 1 fM of targets, exhibiting a sensitivity improved by ∼5 × 105 times compared to the conventional GNP-based colorimetric lateral flow assay used for oligonucleotide testing. Based on the grayscale values, semi-quantitation of up to 1 pM of target sequences was possible in ∼45 min. The methodology could detect the target 16S rRNA from as low as 32 pg/mL of total RNA extracted from pathogens. Specificity was demonstrated with total RNA extracted from E. coli K-12 MG1655, Bacillus subtilis (B. subtilis), and Pseudomonas aeruginosa (P. aeruginosa). No signal was observed from as high as 320 pg/mL of total RNA from the nontarget bacteria. The recognition of target 16S rRNA from 32 pg/mL of total RNA in complex matrices was also demonstrated. The proposed mLFS method was then extended to monitoring B. subtilis and P. aeruginosa. Our approach highlights the possibility of extending this concept to screen specific nucleic acid sequences for the monitoring of infectious pathogens or microbiome implicated in a range of diseases including cancer.
AB - The detection and profiling of pathogenic bacteria is critical for human health, environmental, and food safety monitoring. Herein, we propose a highly sensitive colorimetric strategy for naked eye screening of 16S ribosomal RNA (16S rRNA) from pathogenic agents relevant to infections, human health, and food safety monitoring with a magnetic focus lateral flow sensor (mLFS) platform. The method developed was demonstrated in model 16S rRNA sequences of the pathogen Escherichia coli O157:H7 to detect as low as 1 fM of targets, exhibiting a sensitivity improved by ∼5 × 105 times compared to the conventional GNP-based colorimetric lateral flow assay used for oligonucleotide testing. Based on the grayscale values, semi-quantitation of up to 1 pM of target sequences was possible in ∼45 min. The methodology could detect the target 16S rRNA from as low as 32 pg/mL of total RNA extracted from pathogens. Specificity was demonstrated with total RNA extracted from E. coli K-12 MG1655, Bacillus subtilis (B. subtilis), and Pseudomonas aeruginosa (P. aeruginosa). No signal was observed from as high as 320 pg/mL of total RNA from the nontarget bacteria. The recognition of target 16S rRNA from 32 pg/mL of total RNA in complex matrices was also demonstrated. The proposed mLFS method was then extended to monitoring B. subtilis and P. aeruginosa. Our approach highlights the possibility of extending this concept to screen specific nucleic acid sequences for the monitoring of infectious pathogens or microbiome implicated in a range of diseases including cancer.
UR - http://www.scopus.com/inward/record.url?scp=85105737689&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105737689&partnerID=8YFLogxK
U2 - 10.1021/acsomega.1c01307
DO - 10.1021/acsomega.1c01307
M3 - Article
C2 - 34056264
AN - SCOPUS:85105737689
SN - 2470-1343
VL - 6
SP - 11095
EP - 11102
JO - ACS Omega
JF - ACS Omega
IS - 16
ER -