(0,2) quantum cohomology

Ron Donagi, Joshua Guffin, Sheldon Katz, Eric Sharpe

Research output: Chapter in Book/Report/Conference proceedingOther chapter contribution

Abstract

We review progress on a heterotic analogue of quantum coho-
mology, known as ‘quantum sheaf cohomology’. Whereas ordinary quantum
cohomology is computed by intersection theory on a moduli space of curves,
quantum sheaf cohomology is computed via sheaf cohomology on a moduli
space of curves.
Original languageUndefined
Title of host publicationString-Math 2011
PublisherAmer. Math. Soc., Providence, RI
Pages83-103
Number of pages21
Volume85
DOIs
StatePublished - 2012

Publication series

NameProc. Sympos. Pure Math.
PublisherAmer. Math. Soc., Providence, RI

Cite this

Donagi, R., Guffin, J., Katz, S., & Sharpe, E. (2012). (0,2) quantum cohomology. In String-Math 2011 (Vol. 85, pp. 83-103). (Proc. Sympos. Pure Math.). Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/pspum/085/1375

(0,2) quantum cohomology. / Donagi, Ron; Guffin, Joshua; Katz, Sheldon; Sharpe, Eric.

String-Math 2011. Vol. 85 Amer. Math. Soc., Providence, RI, 2012. p. 83-103 (Proc. Sympos. Pure Math.).

Research output: Chapter in Book/Report/Conference proceedingOther chapter contribution

Donagi, R, Guffin, J, Katz, S & Sharpe, E 2012, (0,2) quantum cohomology. in String-Math 2011. vol. 85, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, pp. 83-103. https://doi.org/10.1090/pspum/085/1375
Donagi R, Guffin J, Katz S, Sharpe E. (0,2) quantum cohomology. In String-Math 2011. Vol. 85. Amer. Math. Soc., Providence, RI. 2012. p. 83-103. (Proc. Sympos. Pure Math.). https://doi.org/10.1090/pspum/085/1375
Donagi, Ron ; Guffin, Joshua ; Katz, Sheldon ; Sharpe, Eric. / (0,2) quantum cohomology. String-Math 2011. Vol. 85 Amer. Math. Soc., Providence, RI, 2012. pp. 83-103 (Proc. Sympos. Pure Math.).
@inbook{b97d28fbbfed46b5b52f606b270ebba1,
title = "(0,2) quantum cohomology",
abstract = "We review progress on a heterotic analogue of quantum coho-mology, known as ‘quantum sheaf cohomology’. Whereas ordinary quantumcohomology is computed by intersection theory on a moduli space of curves,quantum sheaf cohomology is computed via sheaf cohomology on a modulispace of curves.",
author = "Ron Donagi and Joshua Guffin and Sheldon Katz and Eric Sharpe",
year = "2012",
doi = "10.1090/pspum/085/1375",
language = "Undefined",
volume = "85",
series = "Proc. Sympos. Pure Math.",
publisher = "Amer. Math. Soc., Providence, RI",
pages = "83--103",
booktitle = "String-Math 2011",

}

TY - CHAP

T1 - (0,2) quantum cohomology

AU - Donagi, Ron

AU - Guffin, Joshua

AU - Katz, Sheldon

AU - Sharpe, Eric

PY - 2012

Y1 - 2012

N2 - We review progress on a heterotic analogue of quantum coho-mology, known as ‘quantum sheaf cohomology’. Whereas ordinary quantumcohomology is computed by intersection theory on a moduli space of curves,quantum sheaf cohomology is computed via sheaf cohomology on a modulispace of curves.

AB - We review progress on a heterotic analogue of quantum coho-mology, known as ‘quantum sheaf cohomology’. Whereas ordinary quantumcohomology is computed by intersection theory on a moduli space of curves,quantum sheaf cohomology is computed via sheaf cohomology on a modulispace of curves.

U2 - 10.1090/pspum/085/1375

DO - 10.1090/pspum/085/1375

M3 - Other chapter contribution

VL - 85

T3 - Proc. Sympos. Pure Math.

SP - 83

EP - 103

BT - String-Math 2011

PB - Amer. Math. Soc., Providence, RI

ER -