Vesna Stojanoska

20082019
If you made any changes in Pure, your changes will be visible here soon.

Fingerprint Fingerprint is based on mining the text of the expert's scholarly documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 9 Similar Profiles
Modular Forms Mathematics
Picard Group Mathematics
Fermat Curve Mathematics
K-theory Mathematics
Duality Mathematics
Galois Mathematics
Galois group Mathematics
Galois Extension Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2008 2019

  • 11 Article
  • 3 Other chapter contribution
  • 1 Chapter
  • 1 Conference contribution

Classification of problematic subgroups of U(n)

Bergner, J. E., Joachimi, R., Lesh, K., Stojanoska, V. & Wickelgren, K., Jan 1 2019, In : Transactions of the American Mathematical Society. 371, 10, p. 6739-6777 39 p.

Research output: Contribution to journalArticle

Poset
Fixed point
Classify
Subspace
Subgroup

Gross-Hopkins duals of higher real K-theory spectra

Barthel, T., Beaudry, A. & Stojanoska, V., 2019, In : Transactions of the American Mathematical Society. 372, 5, p. 3347-3368 22 p.

Research output: Contribution to journalArticle

On the ring of cooperations for 2-primary connective topological modular forms

Behrens, M., Ormsby, K., Stapleton, N. & Stojanoska, V., Jun 2019, In : Journal of Topology. 12, 2, p. 577-657 81 p.

Research output: Contribution to journalArticle

Modular Forms
Ring
Adams Spectral Sequence
Cover
Leverage

Anderson and Gorenstein Duality

Greenlees, J. P. C. & Stojanoska, V., Jan 1 2018, Geometric and Topological Aspects of the Representation Theory of Finite Groups - PIMS Summer School and Workshop, 2016. Iyengar, S. B., Pevtsova, J. & Carlson, J. F. (eds.). Springer New York LLC, p. 105-130 26 p. (Springer Proceedings in Mathematics and Statistics; vol. 242).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Gorenstein
Duality
Numerology
Local Cohomology
Invariant Theory

Motivic homotopical Galois extensions

Beaudry, A., Hess, K., Kȩdziorek, M., Merling, M. & Stojanoska, V., Feb 15 2018, In : Topology and its Applications. 235, p. 290-338 49 p.

Research output: Contribution to journalArticle

Galois Extension
Galois Theory
Algebraic K-theory