Timothy Moon-Yew Chan

If you made any changes in Pure these will be visible here soon.

Fingerprint Fingerprint is based on mining the text of the expert's scholarly documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 2 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

Approximating text-to-pattern Hamming distances

Chan, T. M., Golan, S., Kociumaka, T., Kopelowitz, T. & Porat, E., Jun 8 2020, STOC 2020 - Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G. & Chuzhoy, J. (eds.). Association for Computing Machinery, p. 643-656 14 p. (Proceedings of the Annual ACM Symposium on Theory of Computing).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Open Access
  • Better data structures for colored orthogonal range reporting

    Chan, T. M. & Nekrich, Y., Jan 1 2020, 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020. Chawla, S. (ed.). Association for Computing Machinery, p. 627-636 10 p. (Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms; vol. 2020-January).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • Dynamic Geometric Data Structures via Shallow Cuttings

    Chan, T. M., 2020, (Accepted/In press) In : Discrete and Computational Geometry.

    Research output: Contribution to journalArticle

  • Faster approximation algorithms for geometric set cover

    Chan, T. M. & He, Q., Jun 1 2020, 36th International Symposium on Computational Geometry, SoCG 2020. Cabello, S. & Chen, D. Z. (eds.). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, LIPIcs-SoCG-2020-27. (Leibniz International Proceedings in Informatics, LIPIcs; vol. 164).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • Faster deterministic and Las vegas algorithms for offline approximate nearest neighbors in high dimensions

    Alman, J., Chan, T. M. & Williams, R., Jan 1 2020, 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020. Chawla, S. (ed.). Association for Computing Machinery, p. 637-649 13 p. (Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms; vol. 2020-January).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution