Research output per year
Research output per year
Research Topics
Host-Pathogen Interactions, Microbial Physiology, Molecular Evolution, Protein Structure, Regulation of Gene Expression, Signal Transduction
Disease Research Interests
Infectious Diseases
B.S. (Microbiology and Biochemistry), University of Washington, 2001
Ph.D. (Microbial Pathogenesis and Molecular Microbiology), Washington University in St. Louis, 2002-2008
Postdoctoral Fellow (Pathology, Microbiology, and Immunology), Vanderbilt University, 2009-2013
Understanding How Starvation Shapes Infection
Bacterial pathogens are a serious and growing threat to human health due to the continued emergence of antibiotic resistance, which limits our ability to treat infections. This threat is exemplified by Staphylococcus aureus, which can infect nearly every tissue in the body and is a leading cause of bone and joint infections, as well as skin and soft tissue infections. During infection pathogens must acquire all their nutrients from the host. This critical task is made more difficult as the host actively restricts essential nutrient availability during infection, starving invaders. However, how nutrient starvation impacts pathogens during infection and the adaptations that allow pathogens to overcome this host defense are unknown. Research in the Kehl-Fie laboratory is interdisciplinary leveraging microbiological approaches, biochemical studies and advanced elemental analysis to answer these questions and identify new opportunities for therapeutic intervention.
Metals and Infection
Transition metals are critical for all forms of life, with 30% of all proteins and 50% of all enzymes predicted to utilize a metal cofactor. To combat invading pathogens, the host renders sites of infection virtually devoid of these critical nutrients, a defense known as “nutritional immunity”. While classically associated with the restriction of iron, the host restricts the availability of other transition metals as well, including manganese and zinc. A critical component of the metal withholding defense of the host is the metal binding protein calprotectin. We have developed a novel series of calprotectin-based tools that enable us to study the impact of host-imposed metal starvation both in culture and during infection, and the strategies used by S. aureus and other bacteria to overcome nutritional immunity. Active areas of investigation in the Kehl-Fie laboratory relating to metals and infection include:
Phosphate and Infection
Phosphate critically contributes to all aspects of life, it is essential for energy storage, gene regulation, and links every base in the chromosome. While essential, overaccumulation of phosphate is toxic. As a result of these conflicting pressures bacteria tightly control phosphate import and homeostasis. Alterations in phosphate homeostasis have also been associated with changes in bacterial sensitivity to antibiotics. While these processes have been studied in model organisms, despite their relevancy to infection, few studies have examined them in pathogenic bacteria. Active areas of investigations in the Kehl-Fie laboratory relating to phosphate include:
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Review article › peer-review