Research output per year
Research output per year
Research Topics
Drug Discovery, Host-Pathogen Interactions, Ion Channels, Membrane Biology, Protein Dynamics, Receptor Biochemistry
Disease Research Interests
Cancer, Infectious Diseases, Metabolic Disorders/Diabetes
B.S. 1992 California State University, Long Beach
Ph.D. 2002 University of Michigan
Postdoc. 2002-2006 Dartmouth Medical School
Protein-Lipid interactions; Membrane Fusion; Lipid Metabolism
Research in the Fratti lab focuses on how the chemical and physical properties of membrane bilayers control the function of proteins. The connection between lipids and protein function are important throughout biology and dysregulation is linked to a wide array of diseases including cancer, diabetes, and Alzheimer’s disease. Therefore, it is important that we understand the fundamentals of protein-lipid interactions so that we can better address their disruption in diseases.
We use lysosomes/vacuoles from the yeast Saccharomyces cerevisiae to reveal how specific lipids inhibit or promote different mechanisms in the process of membrane fusion catalyzed by SNARE proteins. Fusion events are often carried out in highly organized membrane platforms, collectively known as microdomains that are enriched in regulatory lipids that partition from bulk lipids (e.g., phosphatidylcholine) that make up a vesicle. Although low in concentration, regulatory lipids are critical in cellular signaling and the formation of membrane microdomains. The lipids that drive microdomain assembly include phosphatidic acid (PA), diacylglycerol (DAG), phosphoinositides (PI), cholesterol, and sphingolipids. The stoichiometry of these lipids is constantly changing through the action of lipid phosphatases, kinases, and lipases. Lipid modification and remodeling of membranes dramatically changes how lipids interact with proteins and can affect local physical properties such as curvature, fluidity, and bilayer stability. Thus, protein function can be regulated by changes by the lipids in a membrane. Using yeast vacuoles as well as synthetic vesicles we will determine how lipid modification regulates proteins on vesicles as they move through the different stages of the fusion pathway and how dysregulation of these events affects specific genetic and infectious diseases.
Department of Biochemistry
417 Roger Adams Lab B-4
600 S Mathews Ave
Urbana, IL 61801
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Editorial › peer-review