Research output per year
Research output per year
Research Topics
Host-Pathogen Interactions, Microbial Physiology, Regulation of Gene Expression, Sensory Processing, Signal Transduction
Disease Research Interests
Infectious Diseases
B.S. (Genetics), University of Wisconsin, 2011
Ph.D. (Microbiology), Indiana University, 2016
Post-doc, Princeton University, 2016-2020
Exploring the intersection of bacteria and the physical world
In the Sanfilippo lab, we use an interdisciplinary strategy that combines approaches from biology, chemistry, physics, and engineering to probe how physical forces impact bacterial cells.
Bacteria sense shear flow and alter gene expression using rheosensing
Using a novel microfluidic-based transcriptomic approach, we were the first to discover that bacterial cells actively sense and respond to flow speed, through a process we named rheosensing (as rheo- is Greek for flow) (Sanfilippo et al, 2019, Nature Microbiology). A major focus of our research group is to discover the molecular and biophysical mechanisms that control rheosensing.
Using microfluidics to create realistic bacterial environments
Over the past 100 years, scientists have studied bacteria in simplified, static conditions. However, bacteria exist in complex, dynamic conditions in nature. Fluid flow is a fundamental driver of dynamic cellular systems, exemplified by the human urinary tract and bloodstream. In the Sanfilippo lab, we engineer custom microfluidic devices with a variety of heights, widths, and channel geometries to experimentally model realistic bacterial environments.
Research output: Contribution to journal › Review article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review