Joaquin Rodriguez Lopez

If you made any changes in Pure these will be visible here soon.

Personal profile

Personal profile

Joaquín Rodríguez-López did his undergraduate studies at Tecnológico de Monterrey, where he performed research in electrochemistry with Prof. Marcelo Videa (2005). He then moved to nearby Texas to obtain a Ph.D. under the guidance of Prof. Allen J. Bard at the University of Texas at Austin (2010). He performed postdoctoral studies with Prof. Hector D. Abruña in Cornell University (2012). Joaquin’s group combines interests in electroanalytical chemistry and energy materials by developing chemically-sensitive methods for studying ionic and electronic reactivity in nano-structures, highly-localized surface features, and ultra-thin electrodes. Joaquin’s group aspires to build a dynamic and diverse environment for research that generates original concepts for high-performance energy technologies.

Research Interests

Nanoelectrochemistry; Advanced Electrochemical Characterization and Imaging of Materials and Interfaces for Electrocatalysis and Energy Storage; Redox Polymers; Ultrathin Electrodes; Electrochemical Simulation

Professional Information

Our research focuses on characterizing heterogeneous electrode materials for elucidating their function and generating new strategies to advance electrochemical energy technologies and sensing. Our objective is to pioneer powerful methods of analysis at the nano- and micro-scale for understanding how electrode structure, shape and size, as well as the formation of chemical intermediates, impact the performance of materials and interfaces for batteries, electrocatalysts and photoelectrocatalysts. The Rodriguez-Lopez group combines interests in analytical and materials chemistry.

Analytical focus. We use novel electrochemical and chemical probes for quantifying the impact of surface chemical and structural heterogeneities (e.g. defects, strain, sub-surface modifications) on the reaction kinetics and the evolution of interfacial reactivity. We aim at performing such analysis at the micro- and nano- scale and under relevant reacting conditions – that is, in situ and operando schemes. By doing so, we push the boundaries of state-of-the-art electrochemical analysis, performing measurements under challenging conditions such as in inert atmospheres or using sensitive chemistries. We carefully design experiments and chemical strategies together with computational methods for obtaining quantitative information. We make use of an array of electrochemical, spectroscopic, chemomechanical, and clean-room fabrication methods for testing new ideas in electron transfer, catalysis and energy storage.

Materials focus. On the materials side, my group is motivated by the idea that we can control the reactivity of one electrode or of an entire electrochemical device, by designing nano-scale interactions. We have used this concept, in collaboration with the Joint Center for Energy Storage Research, for ambitiously advancing a new type of redox flow battery based on size-exclusion. In this project, highly soluble redox active polymers and colloids are used to store charge. We are intrigued by the electrochemical signatures of these polymers, and we are developing a framework that integrates concepts in electron transfer theory, single particle analysis, and polymer physics to understand the solution reactivity of polymers. Further advancing nano-materials, we are also interested in the exploration of electrochemistry across ultra-thin interfaces. For that purpose, we tailor the reactivity of ultra-thin few layer graphene electrodes by means of short-range electronic and electrostatic effects for uncovering new potential directions in energy conversion and storage. New avenues in the design of electrocatalytic platforms consisting of thin layers of electrocatalysts are also under study in our laboratory for the exploration of new strategies in the design of fuel cell electrodes.

Our group highly values creativity, diversity, and a refreshing view of electrochemical reactivity using unique tools and approaches.

Honors & Awards

2018 Science News SN 10: Scientists to Watch
2017 Scialog Fellow by the Research Corporation for Science Advancement
2017 Royce W. Murray Young Investigator Award by the Society of Electroanalytical Chemistry.
2016-2017 ECS-Toyota Young Investigator Fellowship.
2016 Sloan Research Fellow
2016 Distinguished Service Award, East-Central Illinois ACS Local Section
2014-2016 Joint Center for Energy Research Storage (JCESR) – Director’s fund award
2015 Society of Analytical Chemists of Pittsburgh (SACP) Starter Grant
2012 Young Investigator Award, Energy Materials Center at Cornell
2010 ACS Division of Analytical Chemistry Graduate Fellowship, sponsored by Eli Lilly
2006 First Place for Best Bachelor Thesis in Electrochemistry, Sociedad Mexicana de Electroquímica (SMEQ)

Office Address

Department of Chemistry
University of Illinois
58 RAL, Box 33-5
600 South Mathews Avenue
Urbana, IL 61801

Office Phone

Fingerprint Fingerprint is based on mining the text of the expert's scholarly documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 3 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode

Gossage, Z. T., Hui, J., Sarbapalli, D. & Rodríguez-López, J., Apr 7 2020, In : Analyst. 145, 7, p. 2631-2638 8 p.

Research output: Contribution to journalArticle

  • Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes

    Nijamudheen, A., Sarbapalli, D., Hui, J., Rodríguez-López, J. & Mendoza-Cortes, J. L., Jan 1 2020, (Accepted/In press) In : ACS Applied Materials and Interfaces.

    Research output: Contribution to journalArticle

  • Kinetic Control in the Synthesis of a Möbius Tris((ethynyl)[5]helicene) Macrocycle Using Alkyne Metathesis

    Jiang, X., Laffoon, S. D., Chen, D., Pérez-Estrada, S., Danis, A. S., Rodríguez-López, J., Garcia-Garibay, M. A., Zhu, J. & Moore, J. S., Apr 8 2020, In : Journal of the American Chemical Society. 142, 14, p. 6493-6498 6 p.

    Research output: Contribution to journalArticle

  • Printing 2D Conjugated Polymer Monolayers and Their Distinct Electronic Properties

    Kafle, P., Zhang, F., Schorr, N. B., Huang, K. Y., Rodríguez-López, J. & Diao, Y., Jan 1 2020, (Accepted/In press) In : Advanced Functional Materials. 1909787.

    Research output: Contribution to journalArticle