Hans Friedrich Koehn, Associate Professor

20062019
If you made any changes in Pure, your changes will be visible here soon.

Personal profile

Research Interests

My current research concerns three lines of work:

(1) Combinatorial data analysis of individual differences based on multiple proximity matrices observed from different data sources (e.g., subjects, experimental conditions, time points);

(2) Large-scale nonmodel-based clustering, with particular focus on the p-median model;

(3) Cognitively Diagnostic Modeling

.

.

Selected Publications:

Chiu, C.-Y., & Köhn, H. F. (in press). Consistency theory for the General NonParametric Classification Method. Psychometrika.

Köhn, H. F., & Chiu, C.-Y. (in press). Attribute hierarchy models in cognitive diagnosis: Identifiability of the latent attribute space and conditions for completeness of the Q-matrix. Journal of Classification.

Köhn, H. F., & Chiu, C.-Y. (2018). How to build a complete Q-matrix for a cognitively diagnostic test. Journal of Classification, 35, 273–299.

Köhn, H. F. (2017). Citation classics commentary on Greenhouse and Geisser (1959): On methods in the analysis of profile data. Psychometrika, 82, 1209–1211.

Köhn, H. F., & Chiu, C.-Y. (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. Psychometrika, 82, 112–132.

Köhn, H. F., & Chiu, C.-Y. (2016). A proof of the duality of the DINA model and the DINO model. Journal of Classification, 33, 171-184.

Chiu, C.-Y., & Köhn, H. F. (2016). The Reduced RUM as a logit model: Parameterization and constraints. Psychometrika, 81, 350-370.

Chiu, C.-Y., & Köhn, H. F. (2016). Consistency of cluster analysis for cognitive diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model. Psychometrika, 81, 585-610.

Köhn, H. F., & Hubert, L. J. (2015). Hierarchical cluster analysis. Wiley StatsRef: Statistics Reference Online (WSR).

Köhn, H. F., Chiu, C.-Y., & Brusco, M. J. (2015). Heuristic cognitive diagnosis when the Q-matrix is unknown. British Journal of Mathematical and Statistical Psychology, 68, 268-291.

Köhn, H. F. (2011). A review of multiobjective programming and its application in quantitative psychology. Journal of Mathematical Psychology, 55, 386-396.

Köhn, H. F. (2010). Representation of individual differences in rectangular proximity data through anti-Q matrix decomposition. Computational Statistics and Data Analysis, 54, 2343-2357.

Köhn, H. F., Steinley, D., & Brusco, M. J. (2010). The p-median model as a tool for clustering psychological data. Psychological Methods, 15, 87-95.

Brusco, M. J., & Köhn, H. F. (2009). Clustering qualitative data based on binary equivalence relations: a variable neighborhood search procedure for the clique partitioning problem. Psychometrika, 74, 685-703.

Brusco, M. J., & Köhn, H. F. (2009). Exemplar-based clustering via simulated annealing: a comparison to affinity propagation and vertex substitution. Psychometrika, 74, 457-475.

Brusco, M. J., & Köhn, H. F. (2008). Optimal partitioning of a data set based on the p-median model. Psychometrika, 73, 89-105.

Brusco, M. J., & Köhn, H. F. (2008). Comment on “Clustering by passing messages between data points”. Science, 319, 726c.

Brusco, M. J., Köhn, H. F., & Stahl, S. (2008). Heuristic implementation of dynamic programming for matrix permutation problems in combinatorial data analysis. Psychometrika, 73, 503-522.

Fingerprint Fingerprint is based on mining the text of the expert's scholarly documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 2 Similar Profiles
Q-matrix Mathematics
Cluster Analysis Medicine & Life Sciences
Heuristics Mathematics
Attribute Mathematics
Model Mathematics
Completeness Mathematics
Partitioning Mathematics
Clustering Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2006 2019

Additive Trees for Fitting Three-Way (Multiple Source) Proximity Data

Koehn, H. F. & Kern, J. L., Jan 1 2019, Quantitative Psychology - 83rd Annual Meeting of the Psychometric Society, 2018. Wiberg, M., Culpepper, S., Janssen, R., González, J. & Molenaar, D. (eds.). Springer New York LLC, p. 403-413 11 p. (Springer Proceedings in Mathematics and Statistics; vol. 265).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Proximity
Penalty
Square Functions
Individual Differences
Projection Algorithm

Consistency Theory for the General Nonparametric Classification Method

Chiu, C. Y. & Koehn, H. F., Sep 15 2019, In : Psychometrika. 84, 3, p. 830-845 16 p.

Research output: Contribution to journalArticle

Diagnostics
Estimator
Increasing Functions
Statistical Models
Parametric Model

Residual analysis for unidimensional scaling in the L2-norm

Brusco, M. J., Steinley, D. & Koehn, H. F., Aug 9 2019, In : Communications in Statistics: Simulation and Computation. 48, 7, p. 2210-2221 12 p.

Research output: Contribution to journalArticle

Residual Analysis
Scaling
Norm
Dissimilarity
Voting
Q-matrix
Identifiability
Completeness
Attribute
Research Personnel

How to Build a Complete Q-Matrix for a Cognitively Diagnostic Test

Koehn, H. F. & Chiu, C. Y., Jul 1 2018, In : Journal of Classification. 35, 2, p. 273-299 27 p.

Research output: Contribution to journalArticle

Q-matrix
Diagnostic Tests
Routine Diagnostic Tests
diagnostic
Research Personnel