Research output per year
Research output per year
Research Topics
Cell-Cell Interactions, Development, Endocrinology, Regulation of Gene Expression, Reproductive Biology, Signal Transduction
Disease Research Interests
Cancer, Reproductive Diseases, Infertility, and Menopause
B.S. 1995 University of Wisconsin, Eau Claire, WI
PhD. 2003 Johns Hopkins University-SOM, Baltimore, MD
Postdoc. University of California, San Francisco, CA
Regulation of prostate development and growth by hormone receptor signaling pathways
The major goals of my research have been to understand how the prostate gland develops and how disruption of hormone receptor signaling pathways early in prostate development predisposes humans and rodents to neoplasia. Prostate neoplasia is a leading cause of urologic disease among men. Indeed, most lower urinary tract symptoms in men over age 50 are due to benign prostatic hyperplasia, and prostate cancer is the second leading cause of cancer-related deaths in men. Studies of genetically modified mice suggest that the androgen receptor (AR) plays a role in prostate neoplasia initiation. Androgens, like testosterone, and AR signaling are necessary for prostate development and homeostasis, and disruption of AR-mediated prostate development predisposes humans and rodents to prostate neoplasia by altering the gland’s phenotype early in life. Due to the involvement of AR in both prostate development and neoplasia, a thorough understanding of how AR controls cell proliferation and differentiation during prostate development will offer clues to key developmental events that reemerge in prostate neoplasia.
A fundamental question is how hormones, such as androgens and growth factors, regulate nearly all aspects of the development and growth of the prostate gland. Importantly, the AR does not act alone, rather it directs prostate development and neoplasia by molecular intersection, or crosstalk, with other signaling pathways. My laboratory utilizes an innovative organ culture system and complementary mouse models for prostate development and modern genomic and signaling pathway analyses to identify novel crosstalk between the AR and growth factor signaling pathways that control cell proliferation and differentiation to orchestrate prostate development and growth regulation.
My laboratory’s research is focused on the following biological problems:
Department of Molecular and Integrative Physiology
524 Burrill Hall, MC-114
407 S. Goodwin Ave.
Urbana, IL 61801
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Review article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review