Description
Large, distributed microphone arrays could offer dramatic advantages for audio source separation, spatial audio capture, and human and machine listening applications. This dataset contains acoustic measurements and speech recordings from 10 loudspeakers and 160 microphones spread throughout a large, reverberant conference room.
The distributed microphone system contains two types of array: four wearable microphone arrays of 16 sensors each placed near the ears and across the upper body, and twelve tabletop arrays of 8 microphones each in enclosures designed to resemble voice-assistant speakers. The dataset includes recordings of chirps that can be used to measure impulse responses and of speech clips derived from the CSTR VCTK corpus. The speech clips are recorded both individually and as a mixture to support source separation experiments.
The uncompressed files are about 13.4 GB.
The distributed microphone system contains two types of array: four wearable microphone arrays of 16 sensors each placed near the ears and across the upper body, and twelve tabletop arrays of 8 microphones each in enclosures designed to resemble voice-assistant speakers. The dataset includes recordings of chirps that can be used to measure impulse responses and of speech clips derived from the CSTR VCTK corpus. The speech clips are recorded both individually and as a mixture to support source separation experiments.
The uncompressed files are about 13.4 GB.
Date made available | Oct 19 2019 |
---|---|
Publisher | University of Illinois Urbana-Champaign |
Keywords
- microphone arrays
- augmented listening
- wireless sensor networks
- audio source separation